Question 1:
Marks:
7
For the given cumulative frequency table of students of different age groups, calculate the coefficient of standard deviation and coefficient of variation.
Solution:
Variance =S2 = ∑fx2 / ∑f – (∑fx/∑f)2
17726.75 / 60 – (990/60)2
295.44583 – (16.5)2
295.44583 – 272.25
23.19583
Standard Deviation = √S2 = √23.19583 = 4.816204938
Coefficient of Standard Deviation = S/Mean
_
Mean= X = 990/60 = 16.5
S = 4.81620
So 4.816204938 / 16.5 = 0.291891208
Coefficient of Variation = 4.81620 / 16.5
= 0.291891208 * 100
Coefficient of Variation = 29.1891208
Question 2: Marks: 8
From the following data of hours worked in a factory (x) and output units (y), determine the regression line of y on x, the linear correlation coefficient and interpret the result of correlation coefficient.
Solution:
∑X = 776
∑Y = 2752
∑X.Y = 238024
∑X2 = 67518
∑Y2 = 846654
Regression line Y on X
Byx = n∑xy – (∑x) (∑y) / n∑ x2 – (∑x)2
= 9(238024) – (776)(2752) / 9 (67518) – (776)2
= 9(238024) – (2135552) / 9 (67518) – (602176)
= 2142216 – 2135552 / 607662 – 602176
= 6664 / 5486
= 1.2147284
_ _
A = y – bx
= ∑y / n – b (∑x/n)
= 2752 /9 – 1.2147284 (776/9)
= 305.77777 – 1.2147284 (86.22222)
= 201.0411907
_
Y= a+bx
= 201.0411904 + 1.2147284
Linear Coefficient of Correlation:
∑xy – (∑x)(∑y)/n
r = ——————————————–
√ [∑x2 – (∑x)2 / n ] [∑y2 – (∑y)2 / n]
(238024) – (776)(2752) /9
= —————————————————–
√ [67518 – (776)2 / 9] [846654 – (2752)2 / 9]
238024 – 237283.5556
= ——————————————————-
√ (67518 – 66908.4444) (846654 – 841500.4444)
740.4444
= ————————–
√ (609.5556) (5153.556)
740.4444
= ——————-
√3141378.92
740.444
= ——————
1772.393557
= 0.417765003
For the given cumulative frequency table of students of different age groups, calculate the coefficient of standard deviation and coefficient of variation.
Age in years
|
Cumulative frequency of students (cf)
|
5-8
|
3
|
9-12
|
15
|
13-16
|
24
|
17-20
|
51
|
21-24
|
57
|
25-28
|
60
|
Age in Years | C.F | X | F | Fx | Fx2 |
5 – 8 | 3 | 6.5 | 3 | 19.5 | 126.5 |
9 – 12 | 15 | 10.5 | 12 | 126 | 1323 |
13 – 16 | 24 | 14.5 | 9 | 130.5 | 1892.25 |
17 – 20 | 51 | 18.5 | 27 | 499.5 | 9240.75 |
21 – 24 | 57 | 22.5 | 6 | 135 | 3037.5 |
25 – 28 | 60 | 26.5 | 3 | 79.5 | 2106.75 |
Total | 210 | 99 | 60 | 990 | 17726.75 |
Variance =S2 = ∑fx2 / ∑f – (∑fx/∑f)2
17726.75 / 60 – (990/60)2
295.44583 – (16.5)2
295.44583 – 272.25
23.19583
Standard Deviation = √S2 = √23.19583 = 4.816204938
Coefficient of Standard Deviation = S/Mean
_
Mean= X = 990/60 = 16.5
S = 4.81620
So 4.816204938 / 16.5 = 0.291891208
Coefficient of Variation = 4.81620 / 16.5
= 0.291891208 * 100
Coefficient of Variation = 29.1891208
Question 2: Marks: 8
From the following data of hours worked in a factory (x) and output units (y), determine the regression line of y on x, the linear correlation coefficient and interpret the result of correlation coefficient.
Hours (X)
|
91
|
102
|
83
|
93
|
89
|
72
|
82
|
85
|
79
|
Production (Y)
|
300
|
302
|
315
|
330
|
300
|
250
|
300
|
340
|
315
|
X | Y | X.Y | X2 | Y2 |
91 | 300 | 27300 | 8281 | 90000 |
102 | 302 | 30804 | 10404 | 91204 |
83 | 315 | 26145 | 6889 | 99225 |
93 | 330 | 30690 | 8649 | 108900 |
89 | 300 | 26700 | 7921 | 90000 |
72 | 250 | 18000 | 5184 | 62500 |
82 | 300 | 24600 | 6724 | 90000 |
85 | 340 | 28900 | 7225 | 115600 |
79 | 315 | 24885 | 6241 | 99225 |
776 | 2752 | 238024 | 67518 | 846654 |
∑X = 776
∑Y = 2752
∑X.Y = 238024
∑X2 = 67518
∑Y2 = 846654
Regression line Y on X
Byx = n∑xy – (∑x) (∑y) / n∑ x2 – (∑x)2
= 9(238024) – (776)(2752) / 9 (67518) – (776)2
= 9(238024) – (2135552) / 9 (67518) – (602176)
= 2142216 – 2135552 / 607662 – 602176
= 6664 / 5486
= 1.2147284
_ _
A = y – bx
= ∑y / n – b (∑x/n)
= 2752 /9 – 1.2147284 (776/9)
= 305.77777 – 1.2147284 (86.22222)
= 201.0411907
_
Y= a+bx
= 201.0411904 + 1.2147284
Linear Coefficient of Correlation:
∑xy – (∑x)(∑y)/n
r = ——————————————–
√ [∑x2 – (∑x)2 / n ] [∑y2 – (∑y)2 / n]
(238024) – (776)(2752) /9
= —————————————————–
√ [67518 – (776)2 / 9] [846654 – (2752)2 / 9]
238024 – 237283.5556
= ——————————————————-
√ (67518 – 66908.4444) (846654 – 841500.4444)
740.4444
= ————————–
√ (609.5556) (5153.556)
740.4444
= ——————-
√3141378.92
740.444
= ——————
1772.393557
= 0.417765003
0 comments:
Post a Comment