Pages

24 Apr 2012

STA301 2nd Assignment solution spring 2012

Question 1:                                                                                                                           Marks: 7
For the given cumulative frequency table of students of different age groups, calculate the coefficient of standard deviation and coefficient of variation.
Age in years
Cumulative frequency of students (cf)
5-8
3
9-12
15
13-16
24
17-20
51
21-24
57
25-28
60
Solution:

Age in Years C.F X F Fx Fx2
 5 – 8 3 6.5 3 19.5 126.5
9 – 12 15 10.5 12 126 1323
13 – 16 24 14.5 9 130.5 1892.25
17 – 20 51 18.5 27 499.5 9240.75
21 – 24 57 22.5 6 135 3037.5
25 – 28 60 26.5 3 79.5 2106.75
Total 210 99 60 990 17726.75

Variance =S2 = ∑fx2 / ∑f – (∑fx/∑f)2
17726.75 / 60 – (990/60)2
295.44583 – (16.5)2
295.44583 – 272.25
23.19583
Standard Deviation = √S2 = √23.19583 = 4.816204938

Coefficient of Standard Deviation = S/Mean
_
Mean= X = 990/60 = 16.5
S = 4.81620
So                                            4.816204938 / 16.5 = 0.291891208
Coefficient of Variation = 4.81620 / 16.5
= 0.291891208 * 100
Coefficient of Variation = 29.1891208

Question 2:                                                                                                                           Marks: 8
From the following data of hours worked in a factory (x) and output units (y), determine the regression line of y on x, the linear correlation coefficient and interpret the result of correlation coefficient.
Hours (X)
91
102
83
93
89
72
82
85
79
Production (Y)
300
302
315
330
300
250
300
340
315
Solution:
X Y X.Y X2 Y2
91 300 27300 8281 90000
102 302 30804 10404 91204
83 315 26145 6889 99225
93 330 30690 8649 108900
89 300 26700 7921 90000
72 250 18000 5184 62500
82 300 24600 6724 90000
85 340 28900 7225 115600
79 315 24885 6241 99225
776 2752 238024 67518 846654














∑X =     776
∑Y =     2752
∑X.Y = 238024
∑X2   = 67518
∑Y2   = 846654

Regression line Y on X
Byx  =   n∑xy – (∑x) (∑y) / n∑ x2 – (∑x)2
= 9(238024) – (776)(2752) / 9 (67518) – (776)2
= 9(238024) – (2135552) / 9 (67518) – (602176)
= 2142216 – 2135552 / 607662 – 602176
= 6664 / 5486
= 1.2147284
_      _
A  = y –  bx
= ∑y / n – b (∑x/n)
= 2752 /9 – 1.2147284 (776/9)
= 305.77777 – 1.2147284 (86.22222)
= 201.0411907
_
Y= a+bx
= 201.0411904 + 1.2147284

Linear Coefficient of Correlation:

∑xy – (∑x)(∑y)/n
r = ——————————————–
√ [∑x2 – (∑x)2 / n ] [∑y2 – (∑y)2 / n]

(238024) – (776)(2752) /9
=  —————————————————–
√ [67518 – (776)2 / 9] [846654 – (2752)2 / 9]

238024 – 237283.5556
= ——————————————————-
√ (67518 – 66908.4444) (846654 – 841500.4444)
740.4444
= ————————–
√ (609.5556) (5153.556)
740.4444
= ——————-
√3141378.92
740.444
= ——————
1772.393557
= 0.417765003

0 comments:

Post a Comment